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Gaps and strategies for accurate simulation 
of waterlogging impacts on crop 
productivity
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With the changing climate, soil waterlogging is a growing threat to food 
security. Yet, contemporary approaches employed in crop models to 
simulate waterlogging are in their infancy. By analysing 21 crop models, 
we show that critical deficiencies persist in accurately simulating capillary 
rise, crop resistance to transient periods of waterlogging, crop recovery 
mechanisms, and the effects on soil nitrogen processes, phenology and 
yield components. This hinders the ability of such models to reliably 
simulate the impacts of excessive soil moisture. Advanced crop modelling 
analytics will enable scenario analysis and, with time, farming systems 
adaptation to climate change and increasing frequency of crop failure due to 
waterlogging.

Soil waterlogging, defined as prolonged root zone saturation causing 
oxygen deficit, inhibits the stability of crop and pasture productivity 
in many regions, threatening food security globally1. Extreme rainfall 
events can result in floods and subsequent waterlogging, impact-
ing around 27% of cultivated lands globally each year2. For instance, 
waterlogging regularly affects 16% of the arable soils in the United 
States, 10% of the agricultural lands of Russia and 31% of the Argentine 
Pampas, as well as irrigated crop production areas of India, Pakistan, 
Bangladesh and China3–7. While heat stress remains the primary factor 
influencing yield anomalies worldwide, excess water plays a crucial 

role in explaining yield losses in key wheat-producing regions such as 
China and India8. In 2019, the US Midwest, a key global breadbasket, 
left more than 7.6 million hectares unplanted due to excessive water-
logged conditions9. Similarly, during the severe wheat yield decline 
in France in 2016, one of the most extreme in recent history, 26% of 
grain losses were attributed to soil anoxia10. Atypically large rainfall 
events are expected to increase in frequency and magnitude in many 
regions due to the intensification of the hydrological cycle by global 
warming11, affecting both the world’s dry and wet regions12. Intensified 
irrigated agriculture can also cause waterlogging and associated soil 
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Since then, a few efforts have been made in improving the reliability of 
CMs in projecting how waterlogging affects global food security24–28. 
These improvements include an empirical three-stage representation 
of crop responses and adaptations29 and a more accurate portrayal of 
effects on photosynthesis and phenology25, nitrogen fixation26 and 
other processes27,28. To assess and enhance the efficacy of current CMs, 
we conducted a global model intercomparison and improvement study 
with an international team as part of the Agricultural Model Intercom-
parison and Improvement Project30. To determine the effectiveness of 
existing approaches used to simulate waterlogging, it is first necessary 
to carefully review those processes used in CMs and subsequently 
determine the extent to which these processes capture the biological, 
biophysical and biochemical processes occurring in soils and plants 
(Fig. 1). While previous reviews have used a limited number of CMs29,31, 
this study carries out an analysis of 21 contemporary wheat CMs used 
globally (Table 1) to contrast their capacity to predict waterlogging 
impacts on crop production. We address the gaps in process-based 
understanding and suggest a way forward for the crop modelling com-
munity to enhance the predictive capacity of CMs, thereby strengthen-
ing resilience and adaptation strategies.

Simulation of waterlogging conditions
While there is a general awareness of the need to enhance CM represen-
tation of responses induced in the soil and crops by anoxia and hypoxia, 
the same cannot be said for simulating soil hydrological processes 

salinization in arid and semiarid regions, impacting over one third of 
global irrigated land and thus endangering food security13.

Despite its critical role in ensuring food security, climate change 
impact assessments in agriculture rarely cover waterlogging, with 
the majority of evaluations focusing on drought, heat or gradual cli-
mate change in localized contexts2. Assessments involving accurate 
analysis of risks brought by waterlogging are crucial for formulating 
production and investment strategies to enhance cropping systems 
resilience. Process-based crop models (CMs), simulating crop responses 
to environmental conditions, genetics and management scenarios, 
are at the core of these assessments2,14–16. Nevertheless, the complex-
ity of processes affected by superfluous moisture poses a important 
limitation. Excessive soil moisture, as it transitions from aerobic to 
anaerobic conditions in the root zone, adversely affects crop growth, 
development and yield by altering soil physical, chemical, electrochemi-
cal and biological states, while simultaneously, the crop reciprocally 
influences waterlogging dynamics17–20. The severity of the waterlogging 
impacts varies substantially between crop species and depends on crop 
growth stage, stress duration, temperature, soil properties and the 
rhizosphere microbiome19,21. Moreover, crop species exhibit substantial 
variability in their adaptation mechanisms and recovery capacity from 
waterlogging19,22. Considering this complexity, it is justifiable to ask to 
what extent CMs can adequately reproduce these phenomena.

A decade ago, scientists highlighted the need for improvements 
in CMs to accurately simulate crop responses to waterlogged soils23. 
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Fig. 1 | Overview of the processes and drivers leading to waterlogging and 
associated effects on soil and crop performance. Top: key processes and 
drivers that contribute to waterlogging. Bottom left: the effects of waterlogging 
on soil (specifically chemical properties, microbial activity, physical structure 
and solute transport) and their interconnections. Bottom right: the direct 

and indirect effects of waterlogging on crops, including interactions with 
soil-mediated processes. The arrows indicate the direction of influence, 
with bidirectional links where feedbacks occur. Processes more commonly 
represented in CMs are highlighted in darker blue and those often omitted are 
shown in white. Eh, redox potential.
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related to waterlogging2,29,31. Most studies have focused on modelling 
crop responses to waterlogging29,31–33, thus overlooking this crucial 
aspect. The first step in evaluating CMs’ ability to simulate excess soil 
moisture impacts is to examine their capacity to reproduce waterlog-
ging conditions, including extent (degree of saturation) and duration. 
Failure to accurately simulate soil water dynamics by CMs may lead 
to either over- or underestimation of yield loss from moisture excess. 
Waterlogging conditions in the root zone can arise from manifold 
avenues34, influenced by factors such as weather, terrain topography, 
soil properties, and land and soil management, affecting water infiltra-
tion and fluxes inside the soil profile and over its boundaries20 (Fig. 1). 
This complexity poses a challenge for the precise simulation of the rel-
evant processes. For soil conditions with a shallow water table, we found 
that 24% of CMs are not able to simulate capillary rise (Fig. 2), most often 
replacing this process with an input parameter. Additionally, even with 
the presence of a water table, 33% of the CMs need a prescribed water 
table depth to compute capillary rise since they lack the capacity to 
simulate water table dynamics (‘partial coverage’, Fig. 2). Such limita-
tions in simulating water flux due to capillary rise represent a notable 
constraint, as around 22–32% of the global land area is affected by a 
shallow water table, reaching the plant rooting zone in 7–17% of cases35.

Water infiltration and runoff simulation also play an important 
role in enhancing CM accuracy since excessive rainfall is another 
major factor contributing to waterlogging. However, in 19% of the 
models, runoff estimation is limited due to the omission of the soil 
infiltration capacity (‘partial coverage’, Fig. 2) or even not computed 
at all, as in the case of HERMES2Go36 (Fig. 2). Water infiltration is esti-
mated in most models (57%) by applying a simple capacity model in 
which the maximum infiltration capacity is defined as the difference 
between the soil saturation water content and actual water content 
or a fraction thereof. However, following water infiltration, imperme-
able layers or soil compaction may disrupt water redistribution and 
drainage processes, often leading to waterlogging. The SSM-iCrop37 

and WheatSM38 models face limitations in reproducing this phe-
nomenon, as they are incapable of simulating impermeable layers 
or soil compaction (Fig. 2). This represents a major limitation, as soil 
compaction is a critical issue impacting soil productivity worldwide4. 
Additionally, upslope runoff can cause waterlogging in low-lying 
areas, especially in poorly drained soils. Even though simulating 
subsurface lateral flows is essential for replicating this waterlogging 
condition, most CMs (71%) do not incorporate this feature due to the 
complexity associated with reliable modelling in two dimensions. 
Furthermore, most CMs that do reproduce these flows limit them to 
lateral drainage processes (‘partial coverage’, Fig. 2), such as lateral 
outflows to drainage canals, leading to incomplete representation 
in the CM simulation.

Another cause of inadequately addressed waterlogging conditions 
in CMs is water ponding on the soil surface, with 43% of the CMs unable 
to simulate it. Similarly, 43% of the CMs reviewed do not account for 
snow accumulation and melting, which are among the primary causes 
of waterlogging in northern latitudes during springtime. In these 
regions, freezing and thawing soil is also prone to waterlogging, but 
these processes are considered by only five CMs (Fig. 2). The spatial 
variability associated with waterlogging is another added difficulty 
most CMs overlook. This limitation is particularly critical for their 
application in precision agriculture, where management decisions 
tailored to spatial variability are crucial for optimizing resource use 
efficiency, productivity, quality39, profitability and the sustainability 
of agricultural production40.

Simulation of aeration stress and recovery 
mechanisms
Accurately simulating the impacts of waterlogging on crops via CMs 
depends on the approaches that trigger aeration stress. Aeration stress 
coefficients vary considerably among CMs31 but are mainly derived 
over a pressure-head or volumetric water content threshold (Fig. 3). 
However, for 14% of the CMs, aeration stress is triggered only when 
the water table is above a predefined soil depth, 0.3 m in the case of 
DSSAT CSM N-Wheat41. This constitutes an important limitation since 
a substantial portion of waterlogging in agricultural areas globally is 
caused by factors other than a shallow water table. Nevertheless, some 
CMs that use soil water content as a trigger have limitations consider-
ing a threshold restricted only to a particular soil depth. For instance, 
HERMES2Go36 triggers aeration stress when the soil water content in 
the upper 0.3 m is above a specific threshold, without considering the 
entire rooting zone. Moreover, these thresholds should ideally be crop 
type and phenology specific. In this regard, SSM-iCrop37 does not have a 
crop-specific threshold, and APSIM25,26,42 and HERMES2Go36 are the only 
CMs considering the sensitivity of phenological development stage.

Another aspect related to the trigger mechanisms of aeration 
stress is the duration of waterlogging. While crops are known to resist 
short periods of soil moisture excess, in most CMs (57%, Fig. 3), stress 
is triggered immediately once a waterlogging condition is detected. 
In only 33% of CMs, consecutive waterlogging days equal to or greater 
than three days are required to activate soil and crop responses. In 
HERMES2Go36 and WOFOST43, aeration stress builds up gradually 
over consecutive days under waterlogging. However, none of the CMs 
consider the interaction between the duration and frequency of water-
logging. Another usually neglected aspect is the crop recovery mecha-
nisms after waterlogging. In all models except APSIM25 and WOFOST43, 
the aeration stress effects are assumed to disappear immediately after 
hypoxic/anoxic conditions cease. However, even brief periods of water-
logging can have negative long-term impacts on certain crops and can 
lead to crop failure and damage caused by rapid re-aeration31. These 
limitations suggest that trigger and recovery mechanisms of aeration 
stress in CMs deserve improvement, with a good example being the 
use of a multiplicative structure to calculate dry matter accumulation, 
which would include the after-effects of aeration stress44.

Table 1 | CMs reviewed

Model and version Simulated 
crops

Reference

APSIM c./n.g. (classic and next generation) Multiple 42

APSIM n.g. (next generation) Multiple 66

APSIM v.7.9 Multiple 25

AquaCrop v.7.0 Multiple 51

ARMOSA v.4.2 Multiple 53

DSSAT CSM-CERES-Wheat v.4.8 Wheat 50

DSSAT CSM-NWheat v.4.7-mod. Wheat 41

EPIC v.0810 Multiple 67,68

HERMES2Go Multiple 36

LandscapeDNDC (ref. 20) Multiple 48

MCWLA Multiple 69,70

MONICA v.3.3.1 Multiple 71

SALUS Multiple 49

SIMPLACE<LINTUL5,Hillflow1D> v.5.0 Multiple 72

SIMPLACE<LINTUL5,SlimWL> v.5.0 Multiple 72

SSM-iCrop Multiple 37

STICS v.10 Multiple 73

SWAP v.4.2.0 Multiple 52

WheatGrow Wheat 74

WheatSM Wheat 75

WOFOST v.8.1 Multiple 43
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Disparities in coverage of waterlogging effects on 
soil and crops
While extreme moisture excess events disrupt crop growth and devel-
opment, limitations persist in our understanding of how waterlog-
ging conditions may impact soil physical, chemical and microbial 
properties45, as well as above- and belowground linkages17. This gap 
extends to CMs, with 33% of the models overlooking any effect of 
aeration stress on soil properties (Fig. 4a). Soil nitrogen, a crucial 
yield-limiting nutrient, is markedly influenced by waterlogging20 
through processes such as decreased redox potential, suppressed 
nitrification and enhanced denitrification46. The ammonia-oxidizing 
microbial communities in the soil are affected by waterlogging with a 
potential nitrification rate decrease47, which is simulated by only 43% of 
the CMs. Similarly, its impact on nitrogen fixation by limiting associa-
tions with rhizobacteria and nitrogenase activity17 is represented in only 
38% of the CMs, and the inhibition of soil organic matter decomposition 
under waterlogging conditions is represented in 48% of the CMs. On 
the contrary, 67% of CMs consider the positive correlation between soil 
surface N2O emissions and water-filled pore space20 as a consequence of 
increasing denitrification with aeration stress. Additionally, alterations 

in the availability of nitrogen and other nutrients can be induced by 
pH changes (pH increases in acidic soils and pH decreases in alkaline 
soils) occurring in waterlogged soils20; APSIM25, LandscapeDNDC48 and 
SALUS49 are the only CMs covering this. LandscapeDNDC48 and DSSAT 
CMS-CERES-Wheat50 are the only models reviewed that recognize that 
waterlogged soil becomes a source of CH4 emissions. Furthermore, 
none of the CMs address the increase of ions (such as iron and man-
ganese) and metabolites (such as phenolics and fatty acids) to toxic 
levels in waterlogged soils, which is driven by changes in oxidation 
potential and pH18. Concerning the effects on physical soil properties, 
none of the CMs consider that waterlogged soils have a low structural 
cohesion, with soil management more likely to lead to irreversible soil 
compaction. Compaction, in turn, often exacerbates waterlogging and 
its adverse effects by further limiting water movement within the soil 
profile, affecting infiltration and drainage.

Beyond aeration stress, other stresses related to solute transport 
also contribute to the overall effect on crop production. Excessive 
rainfall can lead to soil nitrogen losses through nitrate leaching, con-
tributing up to 11% of the total nitrate load in groundwater20. Addition-
ally, nitrogen can move upwards to the rooting zone from a shallow 
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Fig. 2 | Processes in CMs involved in simulating waterlogging conditions. The  
bar chart shows the share of CMs considering the following processes: surface 
runoff as a function of soil moisture (‘Runoff = f(soil moisture)’), effects of 
impermeable layers or soil compaction on redistribution and drainage processes 
(‘Impermeable layers’), capillary rise (‘Water table’), water ponding on the soil 
surface (‘Water ponding’), snow accumulation and melting processes (‘Snow 
melting’), subsurface water lateral flow (‘Subsurface lateral flow’) and soil 
freezing and thawing (‘Thawing’). The processes considered in each model are 

shown in the table. Dark, medium and light blue circles indicate advanced, partial 
and nil coverage of the processes, respectively. ‘Advanced coverage’ indicates 
that the model includes functions that simulate the process with a higher level of 
detail and complexity, ‘nil coverage’ means that the process is not at all covered 
by the model and ‘partial coverage’ indicates that the process is either partially 
or indirectly represented. The ‘Number’ column denotes the total number of 
processes covered by each CM.
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water table through capillary rise, thus becoming a nutrient source. 
While downward nitrogen movement is simulated by the 86% of the 
CMs, only 29% consider upward movement (Fig. 4b). CMs also exhibit 
limited coverage regarding salt transport despite the frequent simul-
taneous occurrence of waterlogging and soil salinization13. Among 
the CMs, only APSIM25,42 models, AquaCrop51 and SWAP52 can simulate 
downward salt movement, while AquaCrop51 and SWAP52 account for 
upward transport (Fig. 4b). These findings highlight the insufficient 
attention to the effects of waterlogging in the soil despite its notable 
impact on crop production20. Inadequate coverage of the impacts of 
waterlogging on soil nutrient availability, the accumulation of toxic 
elements and physical properties can lead to an underestimation of 
its effects on crop productivity. This may result in the development of 
inappropriate management strategies, such as suboptimal fertilization 
plans, which negatively impact both farm economy and environment.

The way aeration stress directly impacts crops varies considerably 
among CMs, reflecting the diversity in their simulation approaches. In 
some cases, waterlogging can directly impact the biomass production 
process (29% of the CMs; Fig. 5). Conversely, other processes lead-
ing up to dry matter accumulation, such as crop transpiration and 
photosynthesis, may be the focus in other CMs. These two processes, 
as well as limited root growth and root length density, are the main 
direct effects simulated. In any case, CMs have limited representa-
tion of plant physiological responses under waterlogged conditions, 
reflecting limited knowledge available1. A recent meta-analysis assess-
ing the overall impact of waterlogging on crop yield21 revealed that, on 
average, crop yield decreased by 39%, attributed to a diminished net 
photosynthetic rate, and by 23% due to a reduced leaf area index. How-
ever, the effect of aeration stress is not covered in 48% of the CMs for 

photosynthesis and 29% for leaf area index or canopy cover. Only 24% of 
the CMs account for photosynthate partitioning and grain weight, even 
though waterlogging-related lower grain weight causes a 14% reduction 
in yield21. The mentioned meta-analysis found that waterlogging during 
the reproductive growth phase caused a slightly larger yield reduction 
(42%) than during the vegetative growth phase (35%)21. Thus, there is a 
need to further improve the ability of CMs to simulate late-season water-
logging25. Additionally, the effect of surplus water on phenology is con-
sidered by only APSIM25,42 and ARMOSA53 (Fig. 5) by delaying flowering 
and reducing the grain filling duration2. However, properly simulating 
the flowering window is crucial for yield determination25. Furthermore, 
sensitivities of different growth stages and crop varieties to aeration 
stress are also important but are limitedly addressed in the CMs31. This 
limits the ability of CMs to assist in designing waterlogging-tolerant 
genotypes54, a promising approach for crop production in regions 
with longer temperate growing seasons2. Concerning the adaption 
and acclimation crop response20, only APSIM v.7.9 (ref. 25) represents 
these mechanisms after three days of soil moisture excess. Additionally, 
CMs do not capture the unique response to concurrent stresses, such 
as waterlogging, nutrients and temperature31. Not incorporating the 
adaptation and acclimation mechanisms may lead to an accurate crop 
yield estimation, but it is raised from the wrong factors.

Pathways for improving model simulation of 
waterlogging and agricultural adaptation
CMs are widely used to assess the potential impacts of climate change 
on crop production and to identify adaptation strategies and prior-
ity regions for targeted interventions. However, as evidenced here, 
approaches used in wheat CMs for simulating both waterlogging con-
ditions and coupled soil and crop processes are still largely underde-
veloped and variable. There is no single CM that fully addresses all 
processes, perhaps because no model has been explicitly derived for 
the simulation of crop growth and production under regular waterlog-
ging. While models with a hydrological focus, such as SWAP52, perform 
well for simulating waterlogging conditions and their effects on solute 
movement, models such as APSIM25,42 are more suitable for capturing 
the mechanisms that induce waterlogging stress and its impacts on 
soil and crop growth and development.

Persistent limitations in accurately simulating crop resistance to 
transient waterlogging, crop recovery mechanisms and effects on soil 
processes, phenology and harvest index or yield components hinder 
CMs’ ability to reliably predict both the immediate and long-term 
impacts of excessive soil moisture. Addressing these limitations is 
crucial for using CMs to evaluate the feasibility of investing in drainage 
systems, devise nutrient management strategies18, support breeding 
programmes for waterlogging-tolerant genotypes or optimize plant-
ing dates2. Given the notable role played in crop growth processes 
by soil hydrology, there is a pressing need for more comprehensive 
representation of capillary rise, water ponding and lateral flows, avoid-
ing unnecessary empiricism55. Enhancing the depiction of soil water 
dynamics in CMs will substantially improve their utility in identifying 
effective site-specific adaptation strategies. For instance, CMs may be 
employed to assess the economic viability of integrating cover crops 
or other soil-structure-enhancing crops56, the use of raised beds57, or 
the implementation of precision agriculture practices58 or farming by 
stability zones59. Improved CMs will also facilitate their application as 
a nature-based solution for aquifer recharge in agricultural regions 
with stressed water resources through the controlled flooding of crop 
fields60.

Nonetheless, the integration and improvement of waterlogging- 
related processes are still largely constrained by the limited under-
standing of these interlinked processes, the adequate representa-
tion of soil properties61, the spatial connectivity of soil hydrological 
dynamics and the availability of adequate and representative experi-
mental data1. We are therefore far from accurately predicting the 
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impacts of waterlogging on crop production. This calls for a strategic 
pathway to enhance CMs’ capabilities by bringing together different 
scientific disciplines (such as plant physiology, hydrology, soil phys-
ics, soil ecology and biogeochemistry) and collaborative efforts of 
modeller groups. A useful first step is to promote the establishment 
of soil water, crop and field observation networks to bridge knowl-
edge gaps relating to the effects of excessive soil moisture on crop 
productivity, using advances in proximal and remote sensing tech-
nologies to generate valuable databases. Building on these data, the 
improvement of CMs to address waterlogging issues must be driven 
by the requirements of field management at the farm scale and water 
management at the catchment scale, making CMs more effective 
for practical management purposes. In this regard, the coupling of 
CMs with large-scale hydrological models62,63 or leveraging machine 
learning algorithms64,65 could markedly enhance their performance 
and effectiveness at these scales. The integration of biogeochemical 
cycles, as well as vadose-zone transport models to better simulate 
soil water and heat dynamics and their effect on water content and 
temperature fluctuations (including soil freezing and thawing), should 
also be further explored.

We propose guiding model improvements by the following ques-
tions: Is it more important to improve the simulation of waterlog-
ging conditions than to enhance the representation of soil and crop 
responses to excessive moisture? What is the optimal level of detail 
in process descriptions for each of the involved processes and their 
interactions so that the impacts of waterlogging on crop yields can 
be reliably estimated under different scenarios? What is the extent of 
uncertainty in evaluating the impacts of waterlogging on crop yield? 
CM intercomparison assessments against observed data and sensitivity 
analysis are essential for addressing these questions, with the Agri-
cultural Model Intercomparison and Improvement Project network30 

potentially playing a crucial role. This work lays the foundation for 
these investigations, providing key information for their design and 
result interpretation.
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